Caleb Bashor, Rice University Research Experiences Undergraduates

WEBSITE(S)| ENGMED REU

About Dr. Bashor

Caleb Bashor uses approaches in synthetic biology to understand how complex behavior emerges from the properties of components that comprise cellular regulatory networks. His research focus is on engineering synthetic regulatory programs capable of reshaping cellular phenotype, with an eye on developing transformational cell-based therapeutics from engineered human cells.

The Bashor Lab utilizes diverse eukaryotic cell types (mammalian immune and stem cells) to learn how to reprogram the complex regulatory circuitry involved in cellular sense and response. His approach uses theory and modelling to guide circuit design, and incorporates DNA assembly, microfluidics, and next-generation sequencing to build and characterize circuit libraries in high-throughput.

As a postdoctoral research fellow in the laboratory of Professor James Collins at MIT’s IMES, Bashor established foundational strategies for the comprehensive, bottom-up construction of synthetic regulatory systems in eukaryotes, focusing on the synthesis of both transcriptional (gene networks) and post-translational (signaling pathways) circuits. Both of these platforms will be brought to bear on his circuit engineering efforts.


Research Areas

Synthetic biology: Engineering synthetic regulatory circuitry, with a focus on mammalian gene and signal transduction circuits. Foundational techniques for constructing stable circuit expression in diverse mammalian cell types. Building circuits that can sense, compute, and respond to the extracellular environment. Using massively parallel circuit construction to rapidly and comprehensively explore circuit design space.

Systems biology: Understanding how biological behavior arises from network structure. Using synthetic rewiring to explore the design logic of signaling networks. Developing new approaches for studying and modeling signaling at the single-cell level using high-throughput perturbation and analysis.

Translation: Harnessing mammalian synthetic biology to create cell-based therapeutics. Engineering synthetic circuitry for delivery to adoptive cells. Using synthetic regulatory programs to guide stem cell reprogramming and differentiation. Using synthetic sense and response circuitry to reprogram immune cell function.